Minimum mean square estimation and neural networks

نویسندگان

  • Michael T. Manry
  • Steven J. Apollo
  • Qiang Yu
چکیده

Neural networks for estimation, such as the multilayer perceptron (MLP) and functional link net (FLN), are shown to approximate the minimum mean square estimator rather than the maximum likelihood estimator or others. Cramer-Rao maximum a posteriori lower bounds on estimation error can therefore be used to approximately bound network training error, when a statistical signal model is available for its inputs and the desired outputs are Gaussian. The bounds help the user to determine when to stop training, and to determine how close to optimal the neural net’s performance is. When a linear preprocessor is sought to compress raw data, before it is input into a neural network, the bounds can be used to determine the relative optimality of several candidate linear preprocessors or transforms. A method is proposed for re-ordering the rows of the prepr ocessor’s transform matrix. It is shown that a single linear transformation can be used, even when more than one parameter is estimated by the network. Published in : Neurocomputing, vol. 13, September 1996, pp. 59-74.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)

The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...

متن کامل

Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks

Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...

متن کامل

Estimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)

Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...

متن کامل

Construction cost estimation of spherical storage tanks: artificial neural networks and hybrid regression—GA algorithms

One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven metho...

متن کامل

Estimation of the Ampere Consumption of Dimension Stone Sawing Machine Using of Artificial Neural Networks

Nowadays, estimating the ampere consumption and achieve to the optimum condition from the perspective of energy consumption is one of the most important steps to reduce the production costs. In this research it is tried to develop an accurate model for estimating the ampere consumption by using the artificial neural networks (ANN).In the first step, experimental studies were carried out on 7 ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 13  شماره 

صفحات  -

تاریخ انتشار 1996